Improved minimax estimation of a multivariate normal mean under heteroscedasticity

نویسنده

  • ZHIQIANG TAN
چکیده

Consider the problem of estimating a multivariate normal mean with a known variance matrix, which is not necessarily proportional to the identity matrix. The coordinates are shrunk directly in proportion to their variances in Efron and Morris’ (J. Amer. Statist. Assoc. 68 (1973) 117–130) empirical Bayes approach, whereas inversely in proportion to their variances in Berger’s (Ann. Statist. 4 (1976) 223–226) minimax estimators. We propose a new minimax estimator, by approximately minimizing the Bayes risk with a normal prior among a class of minimax estimators where the shrinkage direction is open to specification and the shrinkage magnitude is determined to achieve minimaxity. The proposed estimator has an interesting simple form such that one group of coordinates are shrunk in the direction of Berger’s estimator and the remaining coordinates are shrunk in the direction of the Bayes rule. Moreover, the proposed estimator is scale adaptive: it can achieve close to the minimum Bayes risk simultaneously over a scale class of normal priors (including the specified prior) and achieve close to the minimax linear risk over a corresponding scale class of hyper-rectangles. For various scenarios in our numerical study, the proposed estimators with extreme priors yield more substantial risk reduction than existing minimax estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

Rate-optimal data-driven specification testing in regression models

We propose a general procedure for testing that a regression function has a prescribed parametric form. We allow for multivariate regressors, non-normal errors and heteroscedasticity of unknown form. The test relies upon a nonparametric linear estimation method, such as a sieves expansion or the kernel method. The choice of the smoothing parameter is data-driven. Under the null hypothesis, the ...

متن کامل

Minimax estimation of multivariate normalmean under balanced loss function 1

This paper considers simultaneous estimation of multivariate normal mean vector using Zellner's(1994) balanced loss function when 2 is known and unknown. We show that the usual estimator X is minimax and obtain a class of minimax estimators which have uniformly smaller risk than the usual estimator X. Also, we obtain the proper Bayes estimator relative to balanced loss function and nd the minim...

متن کامل

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015